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The liberalization of the European energy market has enabled big gas customers
and public utilities to build a portfolio of different gas supplies and purchase con-
tracts. The covering of the gas demand, which is heavily temperature dependent,
can be optimized by combining baseload contracts, open gas delivery contracts,
and the use of the capacity of underground and local pipe storage facilities. We
present a two-stage stochastic linear programming model for the optimization of
the gas-purchase portfolio under uncertain demand conditions while considering
the cost of purchase, underground storage capacities and transportation. Fur-
thermore, we enhance the model to explicitly consider conditional value-at-risk.
We evaluate our approach based on a real-world case study. The results show
that our model is computationally tractable by a standard interior point solver
for hundreds of scenarios. It clearly outperforms alternative deterministic plan-
ning approaches such as scenario analysis both in terms of expected profit and
robustness.
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1 INTRODUCTION

In the last fifteen years, natural gas has become one of Germany’s major sources
of energy, with a share of 23% of the total primary energy consumption in 2007
(see Eurogas (2007)). This share is expected to grow to 30% by 2030, while the
absolute consumption of natural gas is expected to grow by the same amount, mainly
due to increasing gas-based electricity production (see Lanhenke et al (2007)). At
the same time, the liberalization of the European gas market commenced in 1998
with directive 98/30/EG of the European Parliament and European Commission and
was implemented in Germany with the Energy Industrial Act of 2005 (Deutscher
Bundestag (2005)). Germany’s gas market is characterized by a complex, historically
grown three-tier gas value chain of a few importing companies, about fifteen regional
transmission system operators and more than 700 local distributors, mostly public
utilities (see Scheib et al (2006) and Deutsche Bundesregierung (2007)).

Public utilities typically purchase gas from the importing companies and, to a much
smaller extent, from the spot market, and sell it to their local customers. The purchase
price depends heavily on the type and flexibility of the purchase contracts. Substantial
discounts on the market price are granted if the buyer commits himself to take a
predetermined amount of gas over a longer period (several months or years). Public
utilities usually guarantee to cover their customers’ complete future gas demand,
which is highly dependent on outside temperature. Since 2008 it has been possible
for the operators of the local transmission networks to balance short-term fluctuations
(Aretz and Niehörster (2008)). To counterbalance long-term seasonal variations in
gas demand they can lease storage capacity in underground storage facilities. These
storage facilities can also be used to optimize the gas-purchase portfolio by cheaply
buying and storing in summer and supplying from the stored gas in winter. The
decisions about the portfolio of medium-term and long-term purchase contracts and
storage capacities are strategic decisions that are usually taken on a yearly basis. The
goal is to minimize costs of purchase, storage and transportation while ensuring that
the uncertain demand can always be met.

Despite the high practical relevance, there are only a limited number of contribu-
tions to the research literature that focus on the purchase planning problem of local
distribution companies. O’Neill et al (1979) present a network-flow model taking
into account mass conservation and pressure constraints within a pipeline network.
Uncertainty of demand is not considered. Avery et al (1992), Bopp et al (1996)
and Butler and Dyer (1999) develop network-flow type, multiperiod linear program-
ming models that represent the physical gas transportation network as a directed graph
with source and sink nodes for purchase and supply contracts and storage facilities.
The computational burden of these models strongly depends on the time granularity.
We propose different time aggregation schemes to find a good compromise between
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computational burden and the validity of the model’s solution. Uncertainty of input
parameters, especially gas demand and price value, is found to have a major influ-
ence on the planners decisions. Scenario approaches and stochastic versions of the
models are proposed, but could not be solved for a significant number of scenar-
ios due to the exploding computational complexity and limited solver capabilities.
Guldmann (1983) presents a chance-constrained approach for supply, storage and ser-
vice reliability decisions under uncertain demand. This was extended by Guldmann
(1986) to consider several suppliers with different contract characteristics, but, in this
case, only within a deterministic framework. Guldmann and Wang (1999) propose a
mixed-integer programming model and an alternative simulation/optimization-type
approach to solve a simplified supply mix portfolio problem under uncertain demand,
ignoring transportation and storage services. Recently, Aouam et al (2010) presented
an analysis of stochastic programming-based hedging strategies and naive hedging
strategies for the natural gas procurement problem. A variety of nonfinancial and
financial purchase contracts including futures and options as well as storage con-
tacts are considered under price uncertainty, while demand uncertainty is ignored.
Furthermore, the proposed models do not account for an underlying transportation
network and the associated capacity decisions and costs. Other publications model
the strategic supply and transport planning of natural gas on a European scale (Perner
(2002); Seeliger (2006); and Lochner et al (2007)). The authors present determin-
istic linear and mixed-integer network-flow models, with a time horizon of ten to
fifteen years, that focus on the evaluation of the gas transmission infrastructure such
as international gas pipelines, storage facilities and import terminals. These models
are not directly applicable to the purchase planning problem of local distribution
companies. Also, uncertainty of gas demand and purchase prices is not explicitly
considered.

In the last two decades, tremendous progress has been made in the field of compu-
tational linear programming (see, for example, Bixby (2002)). Hyper-sparse simplex
codes (see Koberstein (2008)), highly advanced implementations of interior point
methods (see Meszaros (1999) and Meszaros (1997)) and multicore 64-bit hardware
architectures allows us to solve linear programming problems that are several orders
of magnitude greater in size. At the same time, new solution algorithms, implementa-
tions and modeling tools for stochastic programming problems have been developed
(see Zverovich et al (2009) and Valente et al (2009)). Overall, these achievements
allow us to solve stochastic programming problems of much greater complexity and
easier integration into real-world decision support systems. In the field of financial
portfolio planning, conditional value-at-risk (CVaR) was proposed by Rockafellar and
Uryasev (2002) as an effective measure of risk associated with a planning decision.
A linear formulation of CVaR and an efficient cutting-plane algorithm were given
by Fábián (2008).
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FIGURE 1 German natural gas market model.
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König et al (2007) describe the strategic and operational planning task of local
distribution companies, a basic deterministic model and our decision support system
SAPHIR. In this paper, we present a two-stage stochastic version of the model. Fur-
thermore, we transfer risk-averse decision methods from financial portfolio planning
to gas-purchase planning. We show how the notion of risk can be considered explicitly
by imposing a lower limit on the CVaR associated with a purchase portfolio. Alter-
natively, the CVaR can be considered as an optimization goal for a given target profit
value.

We start with a problem description in Section 2, followed by the description of a
two-stage stochastic model in Section 3. In a case study in Section 4 we evaluate the
computational tractability of our model and analyse the robustness of the generated
purchase portfolios compared with deterministic planning approaches. The paper ends
with some conclusions and an outlook on further research in Section 5.

2 THE STRATEGIC GAS-PURCHASE PROBLEM OF LOCAL
DISTRIBUTION COMPANIES IN GERMANY

With the Energy IndustrialAct of 2005 (Deutscher Bundestag (2005)), a market model
for trading natural gas was established in Germany, which, to a large extent, separates
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the trading from the physical gas transportation. Figure 1 on the facing page depicts
the market model with its typical components. The German gas market has been
divided into different market regions, in which different transportation networks are
integrated. For the purposes of trading, each market region is considered as a virtual
trading point (VP), at which gas can be purchased, sold and distributed to other VPs.
Also, gas can be purchased directly at the national entry points (such as Emden or
Waidhaus). Transportation fees are billed on an annual basis at entry and exit points
of a market region. They depend on the maximum amount of transportation power at
entry and exit points during the year.

A public utility (PU) usually operates only on that part of the market model which is
relevant for its gas purchase and the supply of its customers. The sales contracts usually
commit the PUs to satisfy their customers’uncertain gas demand on an unlimited basis.
Sometimes larger commercial or industrial customers accept interruptible contracts
at lower prices which allow the PU to interrupt the gas supply at short notice. Prices in
sales contracts usually refer to the delivered amount of energy and are fixed a priori
for the coming year. Figure 2 on the next page shows a typical demand curve over one
gas planning year, which traditionally starts in October. As the gas demand is highly
dependent on temperature, it shows the typical characteristics of a yearly temperature
profile: a seasonal fluctuation with high demand in winter and low demand in summer
and a daily fluctuation with peak demand in the mornings and low demand at night.
As peak demand has a high impact on the incurred cost, it is crucial to consider this
appropriately in any kind of decision model.

Typical types of purchase contracts include yearly baseload, monthly baseload and
open contracts. Baseload contracts are take-or-pay contracts. The PU purchases a fixed
quantity of gas at a fixed price for a whole year or each month during the contract
period, which is received at a constant power level. Purchase costs are proportional to
the amount of energy and have to be paid even if the gas cannot be taken due to low
demand and lack of storage capacity. In contrast to baseload contracts, the amount
of energy and the power level purchased from open contracts can vary within certain
intervals that have to be fixed at the beginning of the contract period. Purchase costs
of open contracts are composed of two components: one depends on the purchased
amount of energy, while the other depends on the maximum power purchased during
the contract period. Purchase prices in open contracts are usually much higher than
those of baseload contracts due to higher flexibility. Baseload and open contracts
are typically closed at the beginning of each gas year and cannot be altered during
the year.

Storage can be used to balance seasonal and daily fluctuations, for example, lever-
aging the cheap use of baseload contracts in summer and avoiding the expensive
usage of open contracts in winter. Besides a fixed charge, the usage costs depend
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FIGURE 2 Gas demand curves.
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Part (a) shows a typical gas demand curve over one planning year starting October 1. Parts (b) and (c) depict a
typical gas demand curve for a week in winter and a week in summer, respectively.

The Journal of Energy Markets Volume 4/Number 3, Fall 2011

© 2011 Incisive Media. Copying or distributing in print or electronic 
forms without written permission of Incisive Media is prohibited.



www.manaraa.com

�

�

“jem_koberstein” — 2011/9/8 — 10:07 — page 53 — #7
�

�

�

�

�

�

Modeling and optimizing risk in the strategic gas-purchase planning problem 53

on the injection and extraction power and the total storage volume used. Addition-
ally, compression costs are incurred for injection. Storage underlies certain physical
and technical restrictions. Injection and extraction capacities heavily depend on the
fill level of the storage in a nonlinear way. Furthermore, switching between injec-
tion and extraction cannot be carried out abruptly; there has to be a down time of
several hours in between. For the strategic planning task, these restrictions can be
approximated (nonlinear injection/extraction capacity) or disregarded (down times).
If decision models are to be used for short-term planning, they have to be considered
in greater detail, which inevitably leads to much greater computational complexity. In
this paper, we focus on the strategic planning task, where down times can be neglected
and a linear approximation can be used for determining sensible maximum extraction
and injection limits.

The first German spot market for gas was opened recently at the European Energy
Exchange (EEX) in Leipzig. Gas is traded as daily baseload contracts, where prices
are fixed for the next day. Prices can be assumed to be largely temperature dependent
in the short term and oil-price dependent in the long term.

3 A TWO-STAGE STOCHASTIC LINEAR PROGRAMMING MODEL

As in the model of Avery et al (1992) and its variants, which are based on the physical
transportation network, the new German market model can be represented by a multi-
period network-flow model. Below, we present a two-stage stochastic version of such
a model, which accounts for uncertainty in gas demand by maximizing the expected
profit over a certain number of discrete load scenarios. In principle, gas prices can be
uncertain as well. However, they are largely known for a time period of about nine
months in advance as they depend heavily on the oil price. Only at the spot market
for gas do prices show significant short-term variability.

Natural first-stage decisions are the gas quantities purchased via baseload contracts,
as they have to be fixed at the beginning of the gas year. Maximum storage and
transportation capacities and upper limits on open contracts could also be treated
as first-stage decisions. For the sake of simplicity, we do not do so in the model
presented below. If baseload quantities are fixed, fluctuations in demand are handled
by adjusting purchase from open contracts, transportation, and storage injection and
extraction accordingly. Therefore, these decisions are determined at the second stage
of the model.

Let T be the set of time periods and R be the set of demand scenarios. In the
following, we use the subscript r 2 R to make stage-two decision variables scenario
dependent. The structure of the market model is represented by an undirected graph
consisting of nodesN for market regions and national entry points, and transportation
linksL. A quantity of gas can be transmitted from a node i to a node j in time period
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t 2 T by setting up a power level of pLi;j;t;r megawatts (MW) on link .i; j / 2 L.
Denoting by�Tt the length of a time period in hours, the amount of energy transmitted
in one time period equals�Tt pLi;j;t;r megawatt hours (MWh). In our model, the sign of a
power level indicates the direction of transmission. Power levels have to be balanced
in each node of the network. The costs of transportation on a link depend on the
maximum link capacity utilized in one time period of the gas year. For each link .i; j /
maximum power levels pmaxLi;j;r and pminLi;j;r are determined for both directions of
flow and priced with cost coefficients CENTRYi;j and CEXITi;j , respectively. Note
that pminLi;j;r always takes a nonpositive value.

Storage facilities are represented by a set S and can be associated with nodes i
via subsets SNi � S . The fill level of a storage s in time period t is measured in
terms of MWh and denoted by eSs;t;r . Gas can be injected into and extracted from a
storage s at power levels pINJ

s;t;r and pEXT
s;t;r , respectively. As mentioned before, in stor-

age contracts the maximum extraction and injection power levels sometimes depend
piecewise linearly on the fill level. For the purpose of strategic planning these limits are
approximated by time-dependent constants PMAXEXT

s;t and PMAXINJ
s;t , respectively.

Storage fixed costs SCFs are considered as constant components in the objective
function. Local distribution companies have typically only very few different storage
facilities in place for potential use. We assume that the decision of which storage
facility to use can be made by evaluating different network configurations in subse-
quent optimization runs. Alternatively, binary variables could be associated with the
fixed storage costs, which would, however, increase the computational complexity
of the model. Cost coefficients SCVs , PPRICEINJ

s and PPRICEEXT
s account for the

maximumly used fill, injection and extraction capacities and are associated with the
maximum fill, injection and extraction levels emaxSs;r , pmaxINJ

s;r and pmaxEXT
s;r , respec-

tively. Additional compression costs SCCs are incurred for each unit of injected
energy.

Gas supply contracts are represented by the set SC and node-, time- and scenario-
dependent demand LOADc;i;t;r . As shortfalls are usually not permitted, revenues
follow as constants directly from sales prices EPRICESCc . In order to reflect the view-
point of the planner, we still prefer to state the problem as a maximization problem.

The set BC contains monthly baseload purchase contracts. Sets MBC
b

indicate
in which months a baseload contract b is valid. Since baseload contracts are take-
or-pay contracts, we distinguish between purchase and actual utilization. While the
amount of purchased gas in a month m, denoted by the decision variable pBC p

b;m
, is

a first-stage decision, the utilization pBC u
b;m;r

can be adapted in each scenario r . The
purchased amounts may not exceed upper limits in terms of power, PMAXBCb;m, and
energy, EMAXBCb;m. Purchase costs for baseload contracts are incurred on the basis of
a purchase price per unit of energy EPRICEBCb;m.
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Open contracts are represented by the set OC . Purchase from an open contract
o in time period t is modeled by second-stage decision variables pOCo;t;r . Bounds on
these variables are given by limits on the purchased amount of energy and power
levels. Purchase costs of open contracts are induced by a base price EPRICEOCo;t
on the purchased amount of energy per time period and a peak price PPRICEOCo
on the maximum power level purchased during one gas year. Typically, the total
purchase costs are heavily influenced by the peak component. Sometimes, purchase
contracts come with threshold values for a minimum gas consumption or certain
quantity discount schemes. Our model can easily be extended to consider both of
these features, which would, however, require the use of binary variables and increase
the computational complexity. We leave it to future research to determine whether
the extended model remains computationally tractable. We also experimented with
including the spot market by modeling it largely as a storage facility. Thus:

max �
X
b2BC

X
m2MBC

b

EPRICEBCb;m�
M
m pBC p

b;m
(3.1)

C
X
r2R

�r

�X
t2T

X
i2N

X
c2SCN

i

EPRICESCc �Tt LOADc;i;t;r (3.2)

�
X
o2OC

� X
t2TOCo

EPRICEOCo;t �
T
t pOCo;t;r C PPRICEOCo pmaxOCo;r

�

(3.3)

�
X

.i;j /2L

.CENTRYi;j pmaxLi;j;r �CEXITi;j pminLi;j;r/ (3.4)

�
X
s2S

�
SCFsC SCVs emaxSs;r C PPRICEINJ

s;r pmaxINJ
s;r

C PPRICEEXT
s pmaxEXT

s;r C
X
t2T

SCCs �
T
t pINJ
s;t;r

��

(3.5)

subject to:

X
fb2BCN

i
W montht2MBC

b
g

pBC ub;montht ;r
C

X
fo2SCN

i
W t2TOCo g

pOCo;t;r �
X

fj W .i;j /2Lg

pLi;j;t;r

C
X

fj W .j;i/2Lg

pLj;i;t;r C
X
s2SN

i

.pEXT
s;t;r � pINJ

s;t;r/ D LOADi;t;r ;

8i 2 N; t 2 T; r 2 R

(3.6)
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and:

pBC ub;m;r 6 pBC p
b;m

; 8b 2 BC; m 2MBC
b ; r 2 R (3.7)

pOCo;t;r 6 pmaxOCo;r ; 8o 2 OC; t 2 T
OC
o ; r 2 R (3.8)

pLi;j;t;r 6 pmaxLi;j;r ; 8.i; j / 2 L; t 2 T; r 2 R (3.9)

pLi;j;t;r > pminLi;j;r ; 8.i; j / 2 L; t 2 T; r 2 R (3.10)

eSs;t;r D eSs;t�1;r C�
T
t .p

INJ
s;t;r � pEXT

s;t;r/; 8s 2 S; t 2 T n f1g; r 2 R

(3.11)

eSs;1;r D emaxSs;r ; 8s 2 S; r 2 R (3.12)

eSs;T;r D emaxSs;r ; 8s 2 S; r 2 R (3.13)

eSs;t;r 6 emaxSs;r ; 8s 2 S; t 2 T; r 2 R (3.14)

pEXT
s;t;r 6 pmaxEXT

s;r ; 8s 2 S; t 2 T; r 2 R (3.15)

pINJ
s;t;r 6 pmaxINJ

s;r ; 8s 2 S; t 2 T; r 2 R (3.16)

0 6 pEXT
s;t;r 6 PMAXEXT

s;t ; 8s 2 S; t 2 T; r 2 R (3.17)

0 6 pINJ
s;t;r 6 PMAXINJ

s;t ; 8s 2 S; t 2 T; r 2 R (3.18)

0 6 eSs;t;r 6 EMAXSs ; 8s 2 S; t 2 T; r 2 R (3.19)

0 6 �Mm pBC p
b;m
6 EMAXBCb;m; 8b 2 BC;m 2M

BC
b (3.20)

0 6
X
t2TOCo

�Tt pOCo;t;r 6 EMAXOCo ; 8o 2 OC; r 2 R (3.21)

0 6 pBC p
b;m
6 PMAXBCb;m; 8b 2 BC; m 2M

BC
b (3.22)

0 6 pOCo;t;r 6 PMAXOCo;t ; 8o 2 OC; t 2 T
OC
o ; r 2 R (3.23)

pBC ub;m > 0; 8b 2 BC; m 2M
BC
b (3.24)

pminLi;j;r 6 0; pmaxLi;j;r > 0; 8.i; j / 2 L; r 2 R (3.25)

The complete model description is given in (3.1)–(3.25). The notation is summa-
rized in Table 1 on the facing page. The objective function is stated as the difference
of scenario-dependent revenues (3.2), purchase costs of baseload contracts (3.1) and
open contracts (3.3) and costs of transportation (3.4) and storage (3.5). The balance
of power levels as well as demand fulfillment is ensured by constraint set (3.6). Con-
straint set (3.7) distinguishes purchased and used baseload quantities. Peak purchase
and transportation quantities are determined by constraint sets (3.8)–(3.10). Con-
straint sets (3.11)–(3.13) ensure initialization and balance of the storage fill levels.
Peak storage fill levels and peak injection and extraction levels are determined by con-
straint sets (3.14)–(3.16). The remaining constraints (3.17)–(3.25) impose necessary
bounds on the decision variables.
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TABLE 1 Notation. [Table continues on next two pages.]

(a) Sets

Symbol Definition

R Set of scenarios

N Set of nodes (virtual trading points, national entry points)

L � N �N Set of links

BC Set of baseload contracts

OC Set of open contracts

SC Set of sales contracts

BCNi Set of baseload contracts at node i 2 N

OCNi Set of open contracts at node i 2 N

SCNi Set of sales contracts at node i 2 N

T Set of time periods

MBC
b

Set of months in which baseload contract b 2 BC is valid

TOCo Set of time periods in which open contract o 2 OC is valid

S Set of storage facilities

SNi Set of storage facilities at node i 2 N

As mentioned above, the accurate consideration of peaks in demand is crucial in
order to represent costs accurately. In real-world natural gas trading, accounting is
done on an hourly basis. Therefore, solving the model with�Tt D 1 (one time period
equals one hour) results in the highest possible accuracy. Although the model is blown
up to 8760 time periods given a planning horizon of one year, this variant turned out
to be solvable for practical cases in the deterministic case (one scenario). For the
stochastic case with many scenarios or inherent binary variables, for example, for
storage fixed costs, a time aggregation had to be applied to achieve an acceptable
solution characteristic. As pure averaging would distort or even eliminate short-term
fluctuations, we resorted to representing a certain period of time (for example, a day)
by three time periods of different lengths in the model: one for peak demand, one for
medium demand and one for low demand. The parameter�Tt is used to represent the
length of an associated time period in hours and to enable the correct conversion from
power units into energy units. Table 2 on page 60 gives an overview of typical time
aggregations.

3.1 Incorporating conditional value-at-risk

Given a probability ˛, the CVaR is defined as the conditional mean value of the worst
.1 � ˛/ � 100% of losses/profits. It was first proposed by Rockafellar and Uryasev
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TABLE 1 Continued.

(b) Parameters

Symbol Definition Unit

�r Probability of scenario r 2 R

�Tt ; �
M
m Length of time period t 2 T /month m in hours h

LOADc;i;t;r Gas demand from supply contract MW
c 2 SC at node i 2 N in time period t 2 T
and scenario r 2 R

EPRICESCc;t Price of energy sold via open contract €/MWh
c 2 SC in time period t 2 T

EPRICEBC
b;m

Price of energy purchased via baseload €/MWh
contract b 2 BC in month m 2MBC

b

EPRICEOCo;t Price of energy purchased via open contract €/MWh
o 2 OC in time period t 2 TOCo

PPRICEOCo Price of maximum power level purchased via open €/MW
contract o 2 OC during the planning horizon

PMAXBC
b;m

Maximum power level to be purchased via MW
baseload contract b 2 BC in month m 2MBC

b

PMAXOCo;t Maximum power level to be purchased via MW
open contract o 2 OC in time period t 2 TOCo

EMAXBC
b;m

Maximum amount of energy to be purchased via MWh
baseload contract b 2 BC in month m 2MBC

b

EMAXOCo;t Maximum amount of energy to be purchased via MWh
open contract o 2 OC in time period t 2 TOCo

CENTRYi;j Entry price of market region (node) j 2 N €/MW

CEXITi;j Exit price of market region (node) i 2 N €/MW

montht Index of month time period t belongs to

PPRICEINJ
s Price for maximum power injected €/MW

into storage s 2 S

PPRICEEXT
s Price for maximum power extracted from €/MW

storage s 2 S

SCFs Fixed costs of storage s 2 S €

SCVs Variable storage costs, refer to €/MWh
maximum fill level of storage s 2 S

SCCs Compression costs incurred by injecting €/MWh
one unit of energy into storage s 2 S

EMAXSs Maximum fill level of storage s 2 S MWh

PMAXINJ
s Maximum injection power of storage s 2 S MW

in time period t 2 T

PMAXEXT
s Maximum extraction power of storage s 2 S MW

in time period t 2 T
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TABLE 1 Continued.

(c) Variables

Symbol Definition Unit

pBC p
b;m

Amount of power purchased via baseload contract MW
b 2 BC in month m 2MBC

b

pBC u
b;m

Amount of power used from baseload contract MW
b 2 BC in month m 2MBC

b

pOCo;t Amount of power purchased via open contract MW
o 2 OC in time period t 2 TOCo

pmaxOCo Maximum power level purchase via MW
open contract o 2 OC

pLi;j;t Power level on link .i; j / 2 L in MW
time period t 2 T (can be negative)

pminLi;j Minimal power level on link .i; j / 2 L in MW
time period t 2 T

pmaxLi;j Maximum power level on link .i; j / 2 L in MW
time period t 2 T

pINJ
s;t Amount of power injected into storage MW

s 2 S in time period t 2 T

pEXT
s;t Amount of power extracted from storage MW

s 2 S in time period t 2 T

pmaxINJ
s Maximum used injection power at MW

storage s 2 S

pmaxEXT
s Maximum used extraction power at MW

storage s 2 S

eSs;t Amount of energy stored in storage s MWh
(fill level) in time period t 2 T

emaxSs Maximum amount of energy stored in storage s 2 S MWh

eminSs Minimum amount of energy stored in storage s 2 S MWh

(2002). The authors also show its computational tractability by representing CVaR as
the optimum of a special minimization problem. It is well-known that, in the case of
discrete finite distributions, CVaR optimization problems can be formulated as linear
programming problems. To integrate CVaR into our model, we use the following
formulation of Fábián (2008):

y0 C yr 6 Qr=.1 � ˛/ 8r 2 R (3.26)

yr > 0 8r 2 R (3.27)
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TABLE 2 Hourly, daily and weekly time aggregation.

Number
Length of one of time

time period (hours) periods

Hourly

�Tt D 1 8t 2 T 8760

Daily

�Tt D 3 if .t mod 3/C 1 D 0 1095

�Tt D 13 if .t mod 3/C 2 D 0

�Tt D 8 if .t mod 3/ D 0

Weekly

�Tt D 20 if .t mod 3/C 1 D 0 159

�Tt D 93 if .t mod 3/C 2 D 0

�Tt D 55 if .t mod 3/ D 0

where y0 and yr denote jRj C 1 additional continuous decision variables (y0 is gen-
erally unbounded), and Qr denotes the stage-two objective function value of the r th
scenario, which in our case is equal to the term in square brackets in Equations (3.2)–
(3.5). The variable y0 will assume the CVaR and can hence be used either to optimize
or limit it from below. In our case, the additional computational burden of this for-
mulation seems to be negligible given our relatively large core model.

4 CASE STUDY

4.1 Description of case study

Our case study is based on a real-world planning situation at a large German public
utility. The underlying network consists of eleven nodes, ten arcs and two storage
facilities. Three of the nodes represent sales regions with their respective uninterrupt-
ible sales contracts. The gas demand can be satisfied via purchase from two monthly
baseload contracts and one open contract. We also experimented with including a spot
market that is largely modeled as a storage.

For the three sales regions, real-world hourly load data was available for three
former planning years. Furthermore, we obtained temperature data consisting of daily
temperature averages for one hundred years. In order to generate hourly load scenarios,
the dependency between average daily gas demand and average daily temperature was
approximated by a piecewise linear function based on the real-world load data of one
specific year. This piecewise linear function was then used to generate daily load
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TABLE 3 Impact of time aggregation on model size and solution time.

MOPS
IPM 32

Time Time CPU time
aggregation periods Vars Rows Nonzeros (seconds)

Weekly 159 5 572 13 579 33 926 1
Daily 1095 32 716 90 331 227 678 13

Hourly 8760 255 001 718 861 1 814 333 398

averages for a set of daily temperature data of a certain year. Hourly load scenarios
were obtained by starting from the artificially generated daily load data and mimicking
the daily load fluctuations of the corresponding reference load data in a proportional
way. In the model variant that includes a spot market, spot-market prices were assumed
to behave in a largely temperature-dependent way and were adjusted accordingly using
a simple proportional scheme.

This method of scenario generation was chosen over representing load scenarios
by a stochastic model for two reasons. Firstly, the simplicity and conceivability of
the scenario generation procedure fostered the acceptance of the whole approach by
the companies purchase portfolio planner. Secondly, it is crucial to take into account
the specific regional demand characteristic, such as peak demand on certain days
of the year, in a transparent way. These characteristics are highly dependent on the
regional customer portfolio and can hardly be represented adequately by a general
stochastic model.

4.2 Computational experiences

Table 3 shows computational results for the deterministic model (one scenario) and
different time aggregation. The problem instances were solved using the interior point
code of the solver MOPS 9:29 (see Suhl (2008)) on a standard 32-bit Intel Pentium
IV PC with 3.2GHz and 2GB main memory. Since no basic solution is required in this
case, the crossover method was switched off to speed up the solution process. Clearly,
time aggregation has a major impact on model sizes and solution times, but, for the
deterministic case, all variants were well solvable. In our experiments, simplex-type
solvers turned out to be highly inferior to interior point solvers. However, in some
cases, the dual simplex algorithm was numerically more stable. Furthermore, simplex
solvers typically use much less memory than interior point solvers. A comparison of
objective function values resulted in a deviation of 0:2% for the daily time aggregation
and 3:2% for the weekly time aggregation with respect to the hourly time aggregation.

Table 4 on the next page shows some computational results for the stochastic
model. The deterministic equivalent was solved on an Intel Core 2 Duo 2.2GHz and
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TABLE 4 Computational results for the stochastic model (deterministic equivalent).

Cplex
MOPS 11.0
IPM 64 barrier

Time CPU time CPU time
aggregation Scenarios Rows Vars Nonzeros (seconds) (seconds)

Weekly 500 1 958 061 4 341 028 11 369 098 475 4702
Daily 50 1 527 438 3 774 246 9 682 258 1995 Failed

Hourly 6 1 468 265 3 787 374 9 624 410 398 Failed

8GB of main memory using the 64-bit versions of the solvers MOPS IPM 9:29 and
ILOG Cplex 11:0 Barrier (ILOG (2008)). It can be seen that the stochastic model
can be solved for a considerable number of scenarios with weekly time aggregation
only. Further computational tests conducted by Zverovich et al (2009) indicate that
using state-of-the-art decomposition methods does not outperform the deterministic
equivalent using an interior point solver on our model instances. As in our results, the
Cplex solver failed to solve most of the problem instances due to numerical difficulties.
This confirms our experience that the problem instances generated from our model
are often numerically challenging.

4.3 Impact of uncertainty and benefit of using the stochastic model

In this section we discuss the impact of demand uncertainty and the benefit of using a
stochastic instead of a deterministic model. For this purpose we will make use of the
well-known decision approaches for planning situations under uncertainty, namely
the expected-value (EV), wait-and-see (WS) and here-and-now (HN) approaches,
as well as the stochastic measures expected value of perfect information (EVPI) and
value of the stochastic solution (VSS) (see Birge and Louveaux (1997) for definitions).
Figure 3 on the facing page displays average gas demand together with profits and total
purchase costs from open contracts resulting from the use of the stage-one solution
of the stochastic model (HN solution). Obviously, in our case study, the main risk
of the portfolio planner is lack of supply from baseload contracts in years of peak
demand. In these scenarios, high costs from open-purchase contracts result in low
profits (for example, in scenarios 9 and 40). However, low profits can also occur in
a year of medium demand as in scenarios 64 and 95. Closer analysis reveals that,
in these years, peaks in demand occur in late spring and happen to match with low
storage fill levels. On the other hand, warm winters can lead to a surplus of gas
from baseload contracts. This situation was obviously avoided by the solution of the
stochastic model.
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FIGURE 3 Average gas demand, profits and open-purchase costs of the HN solution for
one hundred scenarios.
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Given the high volatility of demand and the high impact of peak demand on costs,
it is unlikely that the decision maker would ever use an EV approach to determine
what baseload contracts to engage in. By using the EV approach, the demand curve
becomes smoothed, and as such this leads to either overestimation or underestimation.
Consequently, the decision maker will incur large expenses by often having to buy
gas in the open contracts market. However, for clarity in illustrating the various
stochastic measures, we present the full set of stochastic measures, some of which are
a consequence of comparison to the EV approach. As can be deduced from Table 5
on page 65, the impact of uncertainty EVPI is dramatic, particularly if no use is made
of the spot market. If stage-one decisions cannot be partly corrected by purchasing
from and selling to the spot market, the EV solution behaves catastrophically for the
reasons discussed above. The solution of the stochastic model does very well in both
configurations, which is confirmed by a highVSS. It has to be remarked that the results
that include the spot market have to be interpreted with care. As mentioned above,
the modeling of the spot market is only rudimentary – for example, full uncertainty
of spot prices is hardly taken into account. However, we think that Table 5 on page 65
gives a largely correct impression of the benefits of using the stochastic model.

In order to make a more realistic comparison with what the decision maker may do
in reality, we performed a scenario analysis, as shown in Figure 4 on the next page.
In this analysis, an optimal stage-one solution of a certain scenario is evaluated in
all of the remaining scenarios by fixing the stage-one variables accordingly. The
associated expected profit and risk values in terms of CVaR are depicted in part (a)
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FIGURE 4 Scenario analysis.
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Part (a) displays expected profits and CVaR associated with stage-one planning solutions generated by optimizing
each scenario separately. Part (b) displays the stage-one solutions associated with the ten highest load scenarios
only, amended by the solution of the stochastic model (marked by the cross).
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TABLE 5 Stochastic measures (millions of euros).

With Without
spot spot

market market

EEV 176.3 �193.4
WS 185.3 104.1
HN 182.2 87.3
EVPI 3.1 16.9
VSS 5.9 280.7

EEV: expected value of using the expected-value solution. WS: wait-and-see value. HN: here-and-now value (the
optimal solution value of the stochastic model). EVPI: expected value of perfect information. VSS: value of the
stochastic solution.

of Figure 4 on the facing page for all of the one hundred scenarios. It is clear to
see that the vast majority of the scenarios lead to stage-one solutions associated with
catastrophic negative expected profit and risk values. In fact, none of the stage-one
solutions reaches a positive CVaR. Since the decision maker would typically conduct
a scenario analysis looking at the colder years only, we display the ten scenarios with
the highest average gas demand separately in part (b) of Figure 4 on the facing page.
In this case, the coldest planning scenario, which is marked by the dot, yields the
best stage-one solution, however, this still has a negative CVaR. Note that two of
the solutions even yield a negative expected profit. The diagram is amended by the
solution of the stochastic model marked by the cross. Note that it clearly outperforms
the solutions of the coldest year in terms of expected profit. Furthermore, it is the only
stage-one solution which reaches a clearly positive CVaR.

To summarize these results, we have found that, although the deterministic approach
described above is much better than the EV approach, there is still too much volatility
in the demand to ensure a robust solution. The stochastic programming solution
clearly seems the best method for hedging against the volatility of demand and the
consequential purchasing of gas on the open contracts market.

4.4 Explicit risk optimization

Figure 5 on the next page displays the efficient frontier with respect to maximizing
expected profit and CVaR. It was constructed by subsequent optimization runs with
growing lower limits on profit while maximizing CVaR. While the graph clearly
shows the trade-off between risk and profit, the absolute gains in robustness that
come from sacrificing expected profit are small. We also experimented with adding
a CVaR constraint to the model to restrict the tail distribution of profit. Interestingly,
this has a very limited impact, ie, the HN solution already possesses a very good risk
characteristic in terms of CVaR.
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FIGURE 5 Efficient risk–return frontier.
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4.5 Lessons learned from the case study

In solving this problem by investigating all the classical stochastic programming
measures of quality, and conducting a scenario analysis, it is clearly evident that
the proposed purchase strategy of the two-stage stochastic programming problem
provides the decision maker with good guidance compared with the EV and “cold
year” approaches. By taking on board the proposed purchase strategies the problem
owner will be able to make a more informed analysis on these decisions by evaluating
them against the problem owner’s perceived important scenarios. We have found that
the critical issue with regard to risk is the gas that has to be purchased on the open
contracts. Our analyses have illustrated that the two-stage strategy has performed well
in the extreme situations of cold winters or cold late springs. In the situation of warm
winters the results also perform reasonably well, in contrast to the best achievable.
Limiting risk explicitly by adding a CVaR constraint did not have a large impact
on the optimal expected profit. However, our main aim in this investigation was to
illustrate the benefit for the current model of accounting for uncertainty in demand
and using two-stage stochastic programming to propose a gas purchasing strategy.
This investigation clearly illustrates this benefit over a deterministic approach.

5 CONCLUSIONS

We presented a two-stage stochastic linear programming model for the strategic gas-
purchase problem faced by local distribution companies. We enhanced the model
to explicitly consider the CVaR and evaluated our approach based on a real-world
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case study. The results show that our model is computationally tractable using a
standard interior point solver for hundreds of scenarios. A scenario analysis showed
that the purchase portfolios generated by the stochastic model outperform those from
deterministic approaches in terms of both expected profit and robustness. Several
aspects require further research, such as improved consideration of price uncertainty,
integration of the futures market, modeling of quantity discounts and the application
of the model in an operational, rolling-horizon-type planning situation.
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